Appendix E - Accessible Authoring Practices for Course Content Creators

These guidelines address the issues faced by many individuals with disabilities who use assistive technology to access the Web. When considering the barriers within Web content, accessibility issues differ somewhat for each group of assistive technology users. For screen reader users the primary issue is access to visual content, that in most cases can be made accessible by providing text equivalents. For text-to-speech users the primary issue is access to columnar text. For those who need alternative access devices, the primary issue is the size of target areas, such as navigation buttons, image map areas, or form controls. These guidelines address issues faced by a variety of users.

Note: There are differences in the support browsers offer for each of the strategies listed below. Most are supported by Internet Explorer 4, or later, the browser most commonly chosen by assistive technology users.

1. Provide Alternative Formats

Alternatives for Images
The most common alternative format is ALT text for simple images or graphics. By including the ALT attribute within the IMG tag, it is possible to provide a short text description of an image. For a blind user, this may be the only way for them to know what the image represents. ALT text can be included with an image as follows:

	

For more complex images that can not be described in 10 to 12 words, a long description can be included on a separate page, then linked from the image. Traditionally these links to alternative descriptions have been called d-links, or description links. You may have noticed on access aware sites the letter "d" scattered throughout the Web pages. Following a "d" takes the user to an anchor point in the long descriptions page. D-links will be phased out in favour of the new "LONGDESC" attribute. The LONGDESC attribute works like a d-link, though the image, or object itself, serves as the link to an anchor on a long descriptions page. The LONGDESC attribute is not yet widely supported so for now it is recommended that d-links be used in addition to LONGDESC. Examples using d-links and the LONGDESC attribute might look like the following:

-D-link

	

d

-Hidden d-links (but not hidden from a screen reader)

	<img src="some_complex_image.gif" ALT="see d-link that follows

for a long description">

- LONGDESC

	 <img src="some_complex_image.gif" ALT="a short description of some

complex image"

LONGDESC="descriptions.shtml#description_of_some complex_image">

Where the complex image or object is not already a link, the image itself can be linked to the description, in addition to including the LONGDESC attribute, as shown below:

	

<img src="some_complex_image.gif" LONGDESC="descriptions.shtml#description_

of_some_complex_image" border="0">

Alternatives for Programmed Objects
Though most new technologies are adhering to accessibility guidelines, or developing accessibility features as components of the technology, it will be some time before technologies such as Java™, or VRML (Virtual Reality Modeling Language), for example, become universally accessible. Sun Microsystems has developed an accessibility API (Application Programming Interface) for JAVA that allows a screen reader user to access the content of a JAVA application or applet if the accessibility features have been included by the programmer. However, most Java™ applets currently found on the Web are inaccessible. When technologies like these are used, an equivalent alternative format should be provided. If, for example, a Java™ applet is used as a client for a Chat facility, a text based equivalent of the client should be provided (see Naken Chat http://nakenchat.naken.cc for a telnet based equivalent to a Java chat client). Where it is not within the developer's ability to program Java™ applets or VRML worlds in an accessible form, a "d-link" can be used to describe the content of the object. Where critical information is being presented in a programmed object, it should be re-represented along side the object in an equivalent, accessible format.

Alternatives for Text Presentations
Alternative formats also include visual presentations for text, essentially the opposite of the above strategies where text has been included as an alternative to visual objects. For some users text can be a barrier if they have difficulty reading, or if the text is not in their primary language. A good example of a visual equivalent of text is providing a map to accompany text that describes traveling directions. Similarly, instructions that include a step-by-step text description can also include graphical representations of the same steps. It is somewhat more difficult to include visual alternatives to text, but for important instructions or navigation components, presentation should be made in as many formats as possible in order to accommodate the broadest audience.

Alternatives for Other File Formats
A common practice is to create copies of word processed documents in Portable Document Format (PDF) so that the formatting of the document is preserved exactly. Many if not most PDF files currently found on the Web are inaccessible to screen reader and text-to-speech users. An accessible alternative, usually HTML, should included for these files. Tools are available from Adobe that will convert PDF files into HTML format, online at http://access.adobe.com/tools.html. Developers are warned however, that the output generated through the conversion of PDF to HTML, is not always accessible. Developers should examine the conversion-generated markup to ensure its validity and accessibility. Recently Adobe introduced tools to create accessible PDF files, though authors must add these access features (PDF file are not automatically accessible), and not all features of files converted to PDF format will be accessible (e.g. complex forms, tables, and documents with complex layouts). The vast majority of PDF files found on the Web still remain inaccessible.

A second alternative format accessible to most users is Rich Text Format (RTF). RTF files can be displayed in most current word processors. Developers should be aware that a user may not have a viewer that will display RTF files if, for example, they are accessing the document from a public terminal where an RTF compatible viewer is not present or can not be installed by the user. If developers are concerned that users will not be able to access RTF files, they should include an HTML or ASCII text alternative, although the latter strips all formatting from the text that may be conveying meaning (e.g. heading levels, lists, layout etc.)

2. Present Text in a Linear Layout

For many screen reader and text-to-speech users, text presented in table columns creates a significant barrier. Older versions of these technologies may read across the page rather than down through table cells. As a result, the user will hear the first line from the first column, then the first line from the second column, then the second line from the first column, then the second line from the second column, and so on. The resulting audio output is very difficult to understand and in many cases is incomprehensible. The example below demonstrates what a screen reader might read if text is presented in columns

Columns laid out with a table

	The issue of accessible

Web design for people

with disabilities and other

special needs has recently

become a topic of great

concern.
	Making the Web more accessible is

largely dependent upon using

HTML the way it was

intended: to encode

meaning and structure,

rather than control layout

and visual formatting.

The columns above as a screen reader might read them

	The issue of accessible Making the Web more accessible is

Web design for people largely dependent upon using

with disabilities and other HTML the way it was

special needs has recently intended: to encode

become a topic of great meaning and structure,

concern. rather than control lay out and visual

formatting.

There are a variety of strategies that can be employed to overcome this problem.

1. The first strategy deals with text navigation links often placed down the left side of a page that has been laid out with a table. When a screen reader or text reader encounters these text links, they are read intermittently with the text content that appears to the right, much like the example shown above. To overcome this problem the text links that appear to the left should be replaced with images of those links. These images should have ALT text included, or better, include redundant text links somewhere else on the page.

2. A second strategy deals with tables used to lay out columnar text. While not inherently inaccessible, content can be made inaccessible if tables are not used carefully. Where tables are used to create columns, text can be placed in the left cell and an image placed in the right, or visa versa. Similarly, wrapping text can be placed in the right cell, and non-wrapping text placed in the left and vertically aligned to the top of the cell as follows:

	Accessible Design Strategies
	The text to the left appears on a single line. If that text is aligned to the top of the left table cell, the content of the cell will be read before the content of the right table cell

	Accessible Design Strategies
	In this example the text in the left cell is read just after the first line of this cell. The resulting audio output will be confusing

3. The preferred method for dealing with columnar text layout is to use Cascading Style Sheets (CSS). This allows a user to disable CSS, in which case the columnar layout reverts to a linear layout. Users may also choose to use their own style sheet. Though CSS layout is the preferred method, it may not always be practical, since support for various CSS layout elements currently differs among Web browsers, and it differs to the point where Web developers become frustrated when trying to produce CSS laid out content that appears identical across browsers. In future versions of Web browsers this will be less of an issue. Below is the HTML of a sample page laid out in columns using CSS and the DIV element. Cut and paste the HTML in the example below into a new HTML document, then view the page in a CSS enabled browser (eg. Netscape 4.*) with CSS enabled, then disable CSS and reload the page.

In version of Netscape 4, CSS can be disabled through:

 Edit>>Preferences>>Advanced>> then uncheck "Enable Style Sheets."

There is currently no easy way to disable CSS in Internet Explorer. However, it is possible to create a style sheet then implement it through:

 Tools>>Internet Options>> General>> Accessibility>> then check "Format document using my style sheet".

	Columns laid out with CSS

<HTML>

<HEAD></HEAD>

<STYLE TYPE="text/css">

.center {

position: absolute;

top: 120px;

left: 150px;

width: 240px;

height: 100px;

padding:10px;}

.right {

position: absolute;

top: 120px;

left: 400px;

width: 240px;

height: 100px;

padding:10px;}

.bottom {

position: absolute;

top: 320px;

left: 250px;

height: 100px;

width: 600px;}

</STYLE>

<BODY>

<DIV CLASS="center">

<P>

 Creating CSS Columns

 This is some text that would appear in the left column.

When CSS is disabled this text would spread across the

page and appear before the
text that appears to the

right when CSS is enabled.

</P>

</DIV>

<DIV CLASS="right">

<P>

This is some text that would appear in the right column.

When CSS is disabled this text would spread across the

page and appear after the text that appears to the left

when CSS is enabled

</P>

</DIV>

<DIV CLASS="bottom">

<P>

 Home |

 Contact |

 News |

 Resources

</P>

</DIV>

</BODY>

</HTML>

Other strategies are possible. The intent of any strategy used to format columns, should be to provide Web site visitor with a way to linearize the text of those columns. The W3C has created Tablin, a filter program developed by the WAI Evaluation & Repair (ER) group that can linearize HTML tables and render them accordingly to preferences set by a screen reader user. It is available in different forms at: http://www.w3.org/WAI/Resources/Tablin/
Data Tables

For data tables, table header labels should span only a single line. Though it is not widely supported in current browsers, the "ABBR" attribute should be used with the TH element as an alternative, to render header cells in abbreviated form that will be compatible with the next generation of browsers. Where a table header label spans more than one line, the short form included within the ABBR attribute will be read instead of the long header, thus preventing some assistive technology from reading multi-line labels in pieces. The "ABBR" attribute should be used as follows:

	The ABBR attribute used to shorten table header labels

<HTML>

<HEAD></HEAD>

<BODY>

<TABLE>

 <TR>

 <TH>Name</TH>

 <TH>Address</TH>

 <TH ABBR="Long Label">

 This is a long table header label that may span several

 lines, that gets replaced by the ABBR version when read

by a screen reader</TH>

 <TH>Phone</TH>

 </TR>

 <TR>

 <TD>John Doe</TD>

 <TD>10 Lundy Lane, Somecity, T5R 1F4</TD>

 <TD>This cell would contain a long description of

some sort that would span several lines, thus wrap when

placed in a table cell.</TD>

 <TD>671 555-2314</TD>

 </TR>

</TABLE></BODY></HTML>

3. Associate table headers with table cells.

Blind users may have difficulty determining which data cells are associated with which header cells. Having to remember the table headers and associate them with table cells is often beyond the limits of most people's cognitive ability. To eliminate the need to remember table headers, headers can be associated with table cells using the "ID" attribute with the TH element, and the "HEADER" attribute with the TD element, as demonstrated in the table below. Also note that the SUMMARY attribute and CAPTION element have been included with the TABLE element to provide additional contextual information that can aid comprehension for a user who can neither see nor scan through the table.

	Associating header labels with cell content

<HTML>

<HEAD></HEAD>

<BODY>

<TABLE border="1" width="640"

summary="This table is a list of people who have registered for the

Accessible Authoring Practices workshop. Fields include Name, Address,

a field with a long label, and phone number.">

<CAPTION> Registration Information</CAPTION>

<TR>

<TH ID="header1" width="10%">Name</TH>

<TH ID="header2" width="36%">Address</TH>

<TH ID="header3" abbr="Long Label" width="35%">

This is a long label that will

span more than one line</TH>

<TH ID="header4" width="19%">Phone</TH>

</TR>

<TR>

<TD headers="header1" valign="top">John Doe</TD>

<TD headers="header2" valign="top">

10 Lundy Lane, Somecity, T5R 1F4</TD>

<TD headers="header3" valign="top">

A long piece of text might appear here.</TD>

<TD headers="header4" valign="top">

671 555-2314</TD>

</TR>

</TABLE>

</BODY>

</HTML>

The above table example is limited to 640 pixels in width (i.e. width="640") so that wrapping text can be controlled to some extent. You'll notice that after reducing the dimensions of your browser window, the table remains 640 pixels wide, preventing text from wrapping. However, the content of the data cells may not always fit quite as well as the data presented in the table above, and content within cells will often wrap. If wrapping cannot be controlled, a linear alternative should be provided, as described in Section 2 above.

Another strategy that can be used for cells that contain lengthier content is to give these cells their own row that appears immediately above or below the other associated data cells. In the table below the content of the Long Label column has been moved into a row of its own.

	Place long cell content in separate rows

<HTML>

<HEAD></HEAD>

<BODY>

<TABLE border="1" width="640"

summary="This table is a list of people who have registered for

the Accessible Authoring Practices workshop. Fields include Name,

Address, a field with a long label, and phone number.">

<CAPTION> Registration Information</CAPTION>

<TR>

<TH id="header1" width="10%">Name</TH>

<TH id="header2" width="36%">Address</TH>

<TH id="header4" width="19%">Phone</TH>

</TR>

<TR>

<TD headers="header1" valign="top">John Doe</TD>

<TD headers="header2" valign="top">10 Lundy Lane, Somecity,

T5R 1F4</TD>

<TD headers="header4" valign="top">671 555-2314</TD>

</TR>

<TR>

<TD colspan="3" valign="top" id="Long_Label"> There would be

too much content in this cell to contain within a single line, so

this cell is given its own row so that wrapping text does not

interfere with a screen reader's ability to read the content of

the other associated data cells above.

</TD>

</TR>

</TABLE>

</BODY>

</HTML>

4. Provide a way to bypass repetitive content

Almost all well designed sites include a series of navigation links either at the top, or down the side of the page. For a screen reader user, these navigation links can be a source of aggravation, especially when there are many of them. Unlike reading by a sighted person, a blind reader does not have the ability to ignore these navigation links; screen readers read from beginning to end, unless there is a means to skip through the content, bypassing that which these users do not need to hear.

To reduce the amount of unnecessary reading, bypass links can be created prior to repetitive sections. One of the most common strategies is to include an invisible 1x1 gif image immediately before the content to be skipped. This invisible bypass link is anchored further down in the page, and has the ALT text, "bypass navigation links", or something to that effect. Similarly, an invisible 1x1 gif can be used to link to alternative navigation tools. For example, if images are used as navigation links at the top of the page, text equivalent alternatives could be included at the bottom of the page and linked from the top via an invisible gif with an anchor just before the text links at the bottom. The ALT text for this latter bypass link might read "bypass content and go to text links at the bottom," or something to that effect.

In the example below both of these strategies have been implemented.

	Create bypass links to skip over repetitive content

<HTML>

<HEAD></HEAD>

<BODY>

<!-- These are bypass links ->

<img src="dot.gif" border="0" height="1" width="1"

ALT="Bypass top navigation and go to content">

<img src="dot.gif" border="0" height="1" width="1"

ALT="Go to text navigation at the bottom">

<!-- These are images used as navigation links, that would be skipped

over if the users selected one of the invisible links above ->

<!-- This is some content ->

<P>Some content would go here. Notice that the first image at the

top of the page is a 1x1 gif that links to the anchor tag immediately

before this paragraph</P>

<!-- Below are equivalent text links with a bunch of BR tags to

create artificial space to make this example functional if cut

and pasted into a new HTML document then viewed in a Web browser-->

<P>

Home |

Contact |

News |

Resources

</P>

</BODY>

</HTML>

5. Provide context information

In the table example in Section 3 above, the "summary" attribute and the CAPTION element have been used to provide context information. Context information can be included in many ways; in every instance the purpose is to provide a comprehension aid.

Frame Context

If frames are used, the "title" attribute should be included to provide information about the nature of the content in each frame. The most common use of frames is to provide navigation links in one, and a place to open content in another. In such a case the first frame could include title="Navigation Frame," while the second could include title="Content Frame." If a third frame appears across the bottom of the page that displays advertisements, it should include title="Advertisements". In the example below, frames and the frameset include the title attribute. In Internet Explorer 4 or later, the frameset title is displayed when the mouse pointer passes over the edges of the frameset. Also note that a NOFRAMES alternative has been included in the example below to accommodate users with browsers that do not support frames. Without the NOFRAMES alternative these users would see nothing when the main frameset is opened.

	Title frames and include a NOFRAMES alternative

<HTML>

<FRAMESET COLS="20%, 80%" TITLE="Main frameset for access site">

<FRAME NAME="navigation-frame" TITLE="navigation-frame" SRC="nav.html">

<FRAME NAME="content-frame" TITLE="content-frame" SRC="content.html">

<NOFRAMES>

<BODY>

<P>If frames are not supported then this text will appear. The NOFRAMES

alternative should provided alternative content, or a link to

alternative content.</P>

</BODY>

</NOFRAMES>

</FRAMESET>

</HTML>

Table Context
Context information can also be included with frames using a d-link, or an invisible gif at the top left of each frame linking to another page that describes the content of the frame. Similarly, a d-link placed just before a data table, can be linked to a separate page that describes the content of the table. Alternatively for tables, the content of the table can be summarized in the body of the text that appears on the page containing the table, perhaps describing the layout out the table, and describing its highlights.

Lists, Layout, and Content Context
In addition to providing context information for tables and frames, similar information can be included for lists, page layouts, or page content. For lists it might simply mean stating the number of items in the list. Instead of saying "...in the list of items below", say "...in the list of 8 items below". Layout can be described on a separate page, outlining where particular features such as image links, content, and text links are located within the page. Context information about the content of the page can be included by creating a list of links at the top of the page, linked to anchors located prior to each major section of the page, or linked to headings located throughout the page, much like a table of contents. The latter strategy is also useful for sighted users, providing them with a quick overview of the page content, and quick links to sections of content that reduces the need to search through a page for a particular piece of information.

Link Context

Another important form of context information is link text. Many Web content developers use phrases such as "Click here" or “more” as link text, which out of context is meaningless. Screen reader users will often use the TAB key to "tab" through the links on a page to gather the gist of its content. When such a user tabs through a page with links specified by the words "click here," they gather no information about the content of the page or the pages linked from that page. Link text should be meaningful, describing what can be found if the link were followed. For example,

	Use meaningful link text
Don't use

 click here to go to the home page

Do use
go to the home page

6. Explicitly associate labels with form elements and group related form fields.

In many cases explicit labeling of form fields is not necessary, but where complicated forms have been created, or form field labels do not appear immediately above, or immediately before the field, the form field should be explicitly labeled using the LABEL element along with the "FOR" and "ID" attributes. In the example below, notice the use of the FIELDSET element. It has been used to group logically related form fields. Grouping related content can aid memory and comprehension. Within the FIELDSET element appears the LEGEND element, which provides a title for the FIELDSET. The "title" attribute has been used with each form field in place of the usual default characters that should be present in each. In Internet Explorer 4+ the title attribute is displayed when the mouse hovers over the field, and is read by some screen readers in order to explain the expected data to be entered in the field.

The LABEL element has been used to explicitly associate a label "FOR" a field with a particular "ID." With this method the field labels can appear anywhere on the page, and are not restricted to positioning before or above the field. This also prevents labels from becoming fragmented when the size of the browser window decreases, resulting in field labels wrapping over multiple lines. When this occurs, some screen readers will only read the portion of the wrapped label that appears immediately before or above the field, ignoring the rest of the label. Version 4 Netscape browsers do not support the elements and attributes listed in this strategy, but they are supported in the Version 6 browser. Internet Explorer 4+ supports them all.

	Group form elements and explicitly label those elements

<HTML>

<BODY>

<FORM name="examples" action="http://www.somesite.com/cgi-bin"

method="post">

<FIELDSET style="width: 640; background: #ffffcc;

border: solid double blue;">

<LEGEND>Account Information</LEGEND>

<TABLE border="1" WIDTH="400">

<TR>

 <TD width="115px"><LABEL for="login">User Identification:</LABEL></TD>

 <TD width="115px"><input type="text" id="login" alt="user identification"

 title="user-id"></TD>

</TR>

<TR>

 <TD><LABEL for="password">Password:</LABEL></TD>

 <TD><input type="password" id="password" alt="password"

 title="password"></TD>

</TR>

<TR>

 <TD><LABEL for="pass_confirm">Confirm Password:</LABEL></TD>

 <TD><input type="password" id="pass_confirm" alt="confirm password"

 title="confirm password"></TD>

</TR>

</TABLE>

</FIELDSET>

<FIELDSET style="width: 640px; background: #ffffcc;

border: solid double blue;">

<LEGEND>Personal Infomation</LEGEND>

<TABLE border="1" WIDTH="400">

<TR>

 <TD width="115px"><LABEL for="firstname">First name:</LABEL></TD>

 <TD><input tabindex=4 type="text" id="firstname" name="text"

 alt="first name" title="first name"></TD>

</TR>

<TR>

 <TD width="115px"><LABEL for="lastname">Last name:</LABEL></TD>

 <TD><input tabindex=5 type="text" id="lastname" name="text"

 alt="last name" title="last name"></TD>

</TR>

</TABLE>

<TABLE border="1" WIDTH="400">

<TR>

 <TD WIDTH="100"><LABEL for="gender">Gender:</LABEL></TD>

 <TD><LABEL for="gender_male">Male</LABEL><input type="radio" checked

 id="gender_male" name="gender" value="male" alt="gender, male"

 title="gender-male"></TD>

 <TD WIDTH="120"><LABEL for="gender_female">Female</LABEL>

 <input type="radio" id="gender_female" name="gender_female"

 value="female" alt="gender, female" title="gender-female">

 </TD>

</TR>

</TABLE>

<TABLE border="1" WIDTH="400">

<TR>

 <TD><LABEL for="occupation">Occupation:</LABEL></TD>

 <TD colspan=2>

 <SELECT id="occupation" name="occupation" alt="occupation">

 <OPTGROUP label="occupation">

 <OPTION label="generic" value="empty">Select Occupation </OPTGROUP>

 <OPTGROUP label="occupation">

 <OPTION label="Programmer" value="JuniorP">Junior Programmer

 <OPTION label="Programmer" value="SeniorP">Senior Programmer

 </OPTGROUP>

 <OPTGROUP label="occupation">

 <OPTION label="Sales Manager" value="SalesM">Sales Manager

 <OPTION label="other" value="other">Other

 </OPTGROUP>

 </SELECT>

 </TD>

</TR>

</TABLE>

</FIELDSET>

<INPUT type=button value="Submit"

 ONCLICK="alert('This is just an example')"

 title="don't submit">

 <INPUT type=reset title="reset">

</FORM>

</BODY>

</HTML>

7. Use natural language.

Standard usage of acronyms and abbreviations requires that their expanded version be included with the first time they appear in a document. However, it is also common practice not to include the expanded version of very common acronyms or abbreviations. In many cases when a screen reader encounters a short form it will try to pronounce the letters as a word, the resulting audio is often unrecognizable. Imagine a screen reader pronouncing FBI, or NFLD. While some assistive technologies recognize common short forms, many do not. To ensure that blind users understand what the odd pronunciation generated by FBI represents, it is important to include it's full version the first time the short form appears on every page. This should be implemented on every page, since users may enter your site through different routes, perhaps missing the expanded version that appears on another page. Including the long version with the short form the first time it appears on a page allows a blind user to associate the long form with the pronunciation of the short form, and to make that association the next time they hear the short form.

HTML 4.0 introduced two elements to deal with short forms. Acronyms can be contained within the ACRONYM element. Some screen readers will read the value of the ACRONYM element instead of the acronym itself. The following code demonstrates how the ACRONYM element is used. This element is currently supported by IE 4+ .

	Provide full versions of acronyms

Welcome to the<ACRONYM title="Adaptive Technology Resource

Centre">ATRC</ACRONYM>

The ABBR element is used in a similar way, though it is currently not widely supported. For future reference, when browsers do support this feature, the ABBR element should be used as described below.

	Provide full versions of abbreviations

It took exactly 102<ABBR title="milliseconds">ms</ABBR>.

For sites that contain many abbreviations or acronyms, a separate page can be used to list them and their long versions. However, providing the long version on every page where they appear is preferred.

8. Design for device independence.

A common access barrier occurs when a user is required to use a specific access device, usually a mouse, to access an element on a Web page. When an element is not keyboard accessible, blind users, and others with mobility impairments, have no way of accessing that element, since they are unable to use a mouse. One common feature found on many Web sites is a drop down selection menu created with Javascript that automatically takes the user to the chosen resource when the selection is made. This eliminates the need to activate a submit button. While this may be a handy feature for many users, it will render all choices beyond the first one inaccessible to most non-mouse users. When such a user uses the keyboard to scan down through the choices in a drop down list, they are automatically transported to the first choice before they can reach the second choice. To avoid this problem, all drop down choice menus should include a submit button to allow manual control, rather than a script or event handler that automatically sends the user to the resource.

Keyboard access attributes have been added to HTML 4.0, and are currently implemented in Internet Explorer 4 and Netscape 6 or later versions of these browsers. The first is the ACCESSKEY attribute. ACCESSKEYs are commonly added to navigation links to add direct keyboard accessibility to these links. Care should be taken to ensure that the ACCESSKEY chosen do not conflict with shortcut keys used to control browser functions. For example the number "1" can be used as an ACCESSKEY, but the letter "f" cannot. To activate ACCESSKEY requires the ALT key to be depressed at the same time as the designated ACCESSKEY. ALT F would activate the file menu for a browser. In the following example ACCESSKEYs are included in a set of standard navigation links that might appear throughout a Web site. In this example the ALT key is used along with the numbers 1 to 5 to access each link. Notice that the access key brings focus to the link. The enter key must be pressed to activate the link.

	Use markup to create direct keyboard access

<HTML>

<HEAD></HEAD>

<BODY>

|home

|news

|sitemap

|resources

|help|

</BODY>

</HTML>

A second keyboard access feature in HTML 4.0 is the TABINDEX attribute. TABINDEX works like ACCESSKEY though only the TAB key is used. TABINDEX is often used with form fields. Keyboard users may begin navigating a page by pressing the TAB key repeatedly to work their way in sequence through the links, form fields, or form controls on a given page. When the main functionality of a page is located several links or fields down the page, the TABINDEX attribute can be used to take the user immediately to that point in the page, bypassing all links or form fields prior to it. Once the first TABINDEX has been reached, tabbing after that moves a user through the sequence of links or form field that follow. TABINDEX can be used to provide direct access to links as well as form fields, and the order of tabbing can be altered, not necessarily in sequence. In the following example the user would be taken to the first form field on the first tab, the third form field on the second tab, the second form field on the third tab, and the submit button on the forth tab.

	Use TABINDEX to control tabbing order

<HTML>

<HEAD></HEAD>

<BODY>

<FORM>

<INPUT type="text" title="first-field" tabindex="1">

<INPUT type="text" title="third-field" tabindex="3">

<INPUT type="text" title="second-field" tabindex="2">

<INPUT type="submit" title="forth-control" tabindex="4">

</FORM>

</BODY>

</HTML>

9. Provide alternative navigation.

In order to accommodate as broad an audience as possible, a variety of navigation systems can be included that cater to the users' preferences and cognitive capabilities. Seven possible navigation strategies are described below.

· Graphical navigation: these include the use of graphical navigation bars often found down the side, or across the top of a page. These bars are often graphical representations of text. Icons may also be used to navigate throughout a site, using intuitive graphics to represent areas of the site.

· Textual navigation: these usually include a re-representation of the links found in the graphical button bar, and are often located just below the graphical navigation bar, or at the bottom of the page.

· Heading navigation: these links are generally found near the top of a page, and are used to move a user up through hierarchical information. Heading levels (i.e. H1-H6) when nested correctly can also be used to identify ones depth into the hierarchical information, assisting users in developing relationships between pieces of information, aiding their comprehension. Headings are linked to the upper most page in any given section of a hierarchical site.

· Breadcrumbs: these navigation links are similar to the heading navigation links, in that they identify one's depth into hierarchical information. They are usually located across the top of a page listing sections and subsections in a string of links. Each link in the breadcrumb navigation returns the user to the uppermost page in any given section of the site.

· Sequential navigation: for information that requires the user to access it in a particular order, next/last or forward/back links should be included. These will allow users to view information in the order intended by the author.

· Global navigation: these navigation systems are usually represented in a list of links that provide access to all sections of a page or site from a central navigation point. The most common of these is a site-map. A site-map essentially lists all the significant pages in a site, and allows the user to see the relationships between various sections of a site, and to access any page of the site from a single location. A table of contents or an index are similar to a site-map. A list of links like those at the top of a page that lead to subsection of that page, also provides a global navigation strategy, providing the users with a quick overview of the page, and quick access links to particular pieces of information within that page.

· Contextual navigation: These links are generally found within the text of a page, and lead to related information, definitions, references, etc. found on the same page or on other pages of the site.

10. Describe the access strategies a site uses.

Once accessibility strategies have been implemented on a site they should be described, and this description made easily accessible. A link should appear on the home page early in the sequence of links on that page, so it will be found quickly by a screen reader user navigating the page. Other strategic locations to place an accessibility strategies link include the top of a site map, as one of the first pages in the sequence of pages on the site, as part of the standard navigation links found on every page of the site, or linked from any help information provided with the site.
